I Isolation of new sulfate-reducing bacteria enriched with aceta

I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981, 129:395–400.PubMedCrossRef 41. Roberts DJ, Nicaa D, Zuoa G, Davis JL: Quantifying microbially induced deterioration of concrete: initial

studies. Int Biodeter Biodegr 2002, 49:227–234.CrossRef 42. Drobner E, Huber H, Rachel R, Stetter KO: Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 1992, 157:213–217.PubMedCrossRef 43. Moreira D, Amils R: Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 1997, 47:522–528.PubMedCrossRef 44. Johnson DB, Bridge TA: Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme ALK inhibitor cancer systems in Acidiphilium spp. J Appl Microbiol 2002, click here 92:315–321.PubMedCrossRef 45. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM: Comparative metagenomics of microbial communities. Science 2005, 308:554–557.PubMedCrossRef 46.

Cannon GC, Baker SH, Soyer F, Johnson DR, Bradburne CE, Mehlman JL, Davies PS, Jiang QL, Heinhorst S, Shively JM: Organization of carboxysome genes in the thiobacilli. Curr Microbiol 2003, 46:115–119.PubMedCrossRef 47. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L, McDaniel L, Moran MA, Nelson KE, Nilsson C, Olson R, Paul J, Brito BR, Ruan Y, Swan BK, Stevens R, Valentine DL, Thurber RV, Wegley L, White BA, Rohwer F: Functional metagenomic profiling of nine biomes. Nature 2008, 452:629–632.PubMedCrossRef 48. Simon C, Wiezer A, Strittmatter

AW, Daniel R: Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 2009, 75:7519–7526.PubMedCrossRef 49. Friedrich CG: Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 1998, 39:235–289.PubMedCrossRef 50. Meyer B, Imhoff JF, Kuever J: Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing MycoClean Mycoplasma Removal Kit bacteria – evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 2007, 9:2957–2977.PubMedCrossRef 51. Hipp WM, Pott AS, Thum-Schmitz N, Faath I, Dahl C, Trüper HG: Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 1997, 143:2891–2902.PubMedCrossRef 52. Meyer B, Kuever J: Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. Microbiology 2007, 153:3478–3498.PubMedCrossRef 53. Lin JT, Goldman BS, Stewart V: Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al.

Related posts:

  1. Gastroenterology 2005, 128:1229–1242 PubMedCrossRef 11 Torres LE
  2. PubMedCrossRef 14 Lichtenthaler HK, Rohmer M, Schwender J: Two i
  3. In observing the enriched GO terms, we discovered, as anticipated
  4. Here, we report on the selective isolation of actinomycetes from
  5. Periodontol 2006, 42:80–87 CrossRef 8 Zijnge V, Ammann T, Thurnh
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>