Confocal imaging verified the significantly lower skin permeabili

Confocal imaging verified the significantly lower skin permeability of nanoencapsulated FITC compared to Rh B. The effect of % initial loading on skin permeation of nanoencapsulated Rh B and FITC is shown in Fig. 10. Transdermal delivery of Rh B increased significantly (P < 0.05) with the increase Selleckchem CAL101 in dye loading. For 5% Rh B loading (F8), Q48 and flux values were 1.78 ± 0.63 μg/cm2 and 2.53 ± 0.87 μg/cm2/h,

respectively. Increasing loading to 10% w/w (F7) and 20% w/w (F6) caused a significant increase (P < 0.05) in both Q48 (2.99 ± 0.26 and 5.40 ± 0.39 μg/cm2, respectively) and flux (4.29 ± 0.42 and 6.19 ± 0.77 μg/cm2/h, respectively). Differences between Q48 and flux values obtained at 10% w/w and 20% w/w initial load were also statistically

significant (P = 0.001 and 0.030, respectively). On the other hand, increasing initial% FITC loading (5%, 10% and 20% w/w, F9, F10, and F11, respectively, Table 1) led to reduced skin permeation ( Fig. 10 and Table 2). NP formulations F9, F10, and F11 showed average Q48 values of 0.13 ± 0.04, 0.09 ± 0.01, and 0.06 ± 0.02 μg/cm2, Baf-A1 respectively ( Table 2). This corresponded to an average flux of 0.17 ± 0.05, 0.12 ± 0.02, and 0.09 ± 0.03 μg/cm2/h, respectively. Differences between Q48 and flux values obtained at 5% w/w (F9) and 20% w/w Adenosine (F11) initial load were statistically significant (P = 0.026 and 0.041, respectively). Notably, increasing the initial FITC loading of NP stabilized with 1% w/v DMAB from 5% to 20% w/w was associated with an increase in particle size with a higher PDI for F11 and a decrease in zeta potential. The literature information provided proof of concept of enhanced transdermal delivery

of drugs encapsulated in nanocarriers, particularly liposomes [9] and polymeric NPs [10] across MN-treated skin, promoting the transdermal delivery enhancing effect of either approach used separately. A better mechanistic insight is needed for optimization of this combined strategy for diverse drug delivery applications. At the outset, it could be postulated that the flux of a nanoencapsulated drug across MN-treated skin is a complex multifactorial process involving possible in-skin transport of the nanocarrier and the released drug through MN-created aqueous filled microchannels and deeper skin layers.

Related posts:

  1. More effective exploitation of the approach, however, should be b
  2. 159 Combined with neurochemical imaging (such as receptor imagin
  3. Fludarabine Fludara study period was significantly increased with cant
  4. 016) When ELF levels were lower than plasma levels there was a s
  5. The MUC5AC IRS was significantly higher in mutated Gr-LSTs compar
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>