Expression pattern and tissue restriction

Expression pattern and tissue restriction JAK phosphorylation of antigens are essential for the clinical outcome of adoptive immunotherapy. Broadly expressed antigens cause not only T cell responses mediating the GvL-effect, but also GvHD. mHAs being expressed on hematopoietic-cells are representing the best antigens for GVL-reactions as T cells recognizing mHAs may mostly eliminate recipients’haematopoietic-cells including the malignant cells, without affecting donor-haematopoiesis or normal

non-haematopoietic tissues [10]. Most Y-chromosome-coded proteins/mHAs show only few expression/presentation differences between donor and recipient and have a broad tissue-expression including UTY which is weakly expressed on non-hematopoietic cells and highly expressed on hematopoietic cells [11, 12]. The preferential immune recognition of male-cells may be caused by UTY-overexpression or -altered processing recognized by female-donor cells [9]. Therefore anti-UTY-specific T cell reactions after SCT or in the context of DLT might be a promising approach to improve GvL-reactions [6]. The UTY-gene and its X-chromosome-coded homologue UTX belong to the UTX/UTY-family [13]. UTY encodes a tetratricopeptide-repeat selleck inhibitor (TPR) protein with eight TPR-motifs and one JmjC-domain. TPR-motifs are believed to mediate protein-protein

interactions. Some representatives of the JmjC-protein family have histone-demethylase properties and are involved in chromatin reorganization. For UTX, a regulating role in HOX-genes was reported implicating a function in development with nuclear subcellular localization [14]. UTX, in comparison to UTY, is involved in animal morphogenesis, as no enzymatic-demethylase activity was detectable for UTY [15]. For UTY, a nucleic-localization was determined but data according to its function are still lacking [16]. Moreover, a differential-expression profile of UTY and UTX was suggested [17]. For the human-(h)-UTY, different

CTL-epitopes were identified being leukemia-associated and HLA-B8-, HLA-B60- and HLA-B52-restricted [12, 18, Alanine-glyoxylate transaminase 19]. A promising way to treat (relapsed)-leukemia was shown to be provided by adoptive-immunotherapy via CTLs in allogeneic-chimeras [20]. Great progress in transplantation-biology has been derived from canine-(c)-preclinical-studies. Adoptive immunotherapy with DLT was developed by our group in a dog-model: Tolerance was induced by transplanting dogs with T cell-depleted stem cells from dog-leukocyte-antigen-(DLA)-identical littermates followed by DLT 61/62 days later. This enabled a conversion of a mixed-chimerism to full-donor type without inducing GvHD [21].

Related posts:

  1. Large expression of TF in granulocytes may possibly lead to graft
  2. Interestingly, expression of Egfl7, miR 126 and miR 126 was induc
  3. We consistently observed constitutive expression of TLT-2 in LN C
  4. , USA) Protein extracted from epididymal adipose tissue was quan
  5. Expression of cytokeratin 10 was induced at concentrations at or
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>