Trends Plant Sci 4(4):130–135PubMed Miloslavina Y, Wehner A, Lambrev www.selleckchem.com/products/ml323.html PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for lhcII oligomer formation in non-photochemical quenching. FEBS Lett 582(25):3625–3631PubMed Minagawa J (2011) State transitions—the molecular remodeling of photosynthetic supercomplexes
that controls energy flow in the chloroplast. Biochim Biophys Acta 1807(8):897–905PubMed Müller P, Li X, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125(4):1558PubMed Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve Selleckchem ATM inhibitor energy transfer to carotenoids. Chemphyschem 11(6):1289–1296PubMed Müller MG, Jahns P, Holzwarth AR (2013) Femtosecond transient absorption spectroscopy on the light-adaptation of living plants. EPJ Web Conf 41:08006 Murata N, Sugahara K (1969) Control of excitation transfer in photosynthesis. III. Light-induced decrease of chlorophyll a fluorescence related to photophosphorylation
system in spinach chloroplasts. Biochim Biophys Acta 189(2):182–192PubMed Nilkens M, Kress E, Lambrev P, Miloslavina Y, Mueller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797(4):466–475PubMed Nishio JN, Whitmarsh J (1993) Dissipation of the proton electrochemical potential in intact
chloroplasts (II. the pH gradient monitored by cytochrome f reduction kinetics). Plant Physiol 101(1):89–96PubMed Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol. 10.1016/j.pbi.2013.03.011 Niyogi KK, Björkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94(25):14162–14167PubMed Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Dynein Cell 10(7):1121–1134PubMed Niyogi K, Shih C, Chow W, Pogson B, DellaPenna D, Bjorkman O (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67(1–2):139–145PubMed Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis. J Exp Bot 56(411):375–382PubMed Noomnarm U, Clegg RM (2009) Fluorescence lifetimes: fundamentals and interpretations. Photosynth Res 101(2–3):181–194PubMed Pascal AA, Liu ZZ, Broess KK, van Oort BB, van Amerongen HH, Wang CC, Horton PP, Robert BB, Chang WW, Ruban AA (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting.
Related posts:
- org/10 1016/j cbpa 2013 02 027 Improving the productivity of stra
- In the plant, cannabinoids are synthesized and accumulated as can
- Green Fluorescent Protein antibody
- 1f, g) During the culture for 7 d, the pH of the medium was main
- Maraviroc CCR5 inhibitor or lethal event in post mitotic neurons? Biochim Biophys Acta