(C) 2014 AIP Publishing LLC.”
“Densely ionizing radiation, which is present in the space radiation environment and
used in radiation oncology, has potentially greater carcinogenic effect compared with sparsely ionizing radiation that is prevalent on earth. Here, we used a radiation chimera in which mice were exposed to densely ionizing 350 MeV/amu Si-particles, gamma-radiation, or sham-irradiated and transplanted 3 days later with syngeneic Trp53-null mammary fragments. Trp53-null tumors arising in mice irradiated with Si-particles had a shorter median time to appearance and grew faster once detected compared with those in sham-irradiated or g-irradiated mice. Tumors were further
classified by markers keratin 8/18 (K18, Compound C ic50 KRT18), keratin 14 (K14, KRT14) and estrogen receptor (ER, ESR1), and expression profiling. click here Most tumors arising in sham-irradiated hosts were comprised of both K18- and K14-positive cells (K14/18) while those tumors arising in irradiated hosts were mostly K18. Keratin staining was significantly associated with ER status: K14/18 tumors were predominantly ER-positive, whereas K18 tumors were predominantly ER-negative. Genes differentially expressed in K18 tumors compared with K14/18 tumor were associated with ERBB2 and KRAS, metastasis, and loss of E-cadherin. Consistent with this, K18 tumors tended to grow faster and be more metastatic LY2157299 than K14/18 tumors, however, K18 tumors in particle-irradiated mice grew significantly larger and were more metastatic compared with sham-irradiated mice. An expression profile that distinguished K18 tumors arising in particle-irradiated mice compared with sham-irradiated mice
was enriched in mammary stem cell, stroma, and Notch signaling genes. These data suggest that carcinogenic effects of densely ionizing radiation are mediated by the microenvironment, which elicits more aggressive tumors compared with similar tumors arising in sham-irradiated hosts. (C)2014 AACR.”
“The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad.
Related posts:
- Improved sensitivity to ionizing radiation was not observed durin
- Survival of HaCaT cells after UVB radiation was higher in treatme
- Mouse Study Shows Green Tea Polyphenols May Repair DNA Damage Caused by UV Radiation
- D M -F ) “
“(Neuron 83, 1354–1368; September 17, 2014) In t - (Hepatology 2014;58:328–339) The gut microbiota is the collective