CrossRef 8 Dekker C: Solid-state nanopores Nat Nano 2007, 2:209

CrossRef 8. Dekker C: Solid-state nanopores. Nat Nano 2007, 2:209–215.CrossRef 9. Kim HM, Cho YH, Lee H, Kim SI, Ryu SR, Kim DY, Kang TW, Chung KS: High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 2004, 4:1059–1062.CrossRef 10. Kim HM, Kang TW, Chung KS: Nanoscale ultraviolet-light-emitting diodes using wide-bandgap

gallium nitride nanorods. Adv Mater 2003, 15:567–569.CrossRef 11. Kikuchi A, Kawai M, Tada M, Kishiono K: InGaN/GaN AR-13324 molecular weight multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn. J. Appl. Phys. 2004, 43:L1524-L1526.CrossRef 12. Xu HB, Lu N, Qi DP, Gao LG, Hao JY, Wang YD, Chi LF: Broadband antireflective Si nanopillar arrays produced by nanosphere lithography. Microelectronic Engineering Journal 2009, 86:850–852.CrossRef 13. Szabó Z, Volk J, Fülöp E, Deák A, Bársony I: Regular ZnO nanopillar arrays by nanosphere photolithography. Photonics and Nanostructures Fundamentals and Appl 2013, 11:1–7.CrossRef 14. Villanueva G, Plaza JA, Sanchez-Amores A, Bausells J, Martinez E, Samitier J,

Errachid A: FIB and DRIE combination for nanotip fabrication. In Spanish Conference on Electron Devices, February 2–4 2005; Tarragona. Piscataway: IEEE; 2005:443–446.CrossRef 15. Yue SL, Gu CZ: Nanopores fabricated by focused ion beam milling technology. In 7th IEEE Conference on Nanotechnology (IEEE-NANO 2007), August2–5 2007; Hong Kong. Piscataway: IEEE; 2007:628–631. 16. Jae HK, Jung 3-oxoacyl-(acyl-carrier-protein) reductase buy BI 10773 YK, Byung IC: Multi-scale analysis and design of nano imprint process. In 3th IEEE Conference on Nanotechnology (IEEE-NANO 2003), August 12–14 2003; San Francisco. Piscataway: IEEE; 2003:263–266. 17. Lee D, Pan H, Sherry A, Ko SH, Lee MT, Kim E, Grigoropoulos CP: Large-area nanoimprinting on various substrates by reconfigurable maskless laser direct writing. Nanotechnology 2012, 23:344012.CrossRef 18. Haske W, Chen VW, Hales JM, Dong WT, Barlow S, Marder SR, Perry JW: 65nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Express 2007, 15:3426–3436.CrossRef 19. Liao Y, Song JX, Li E, Luo Y, Shen YL, Chen DP, Cheng

Y, Xu ZZ, Sugioka K, Midorikawa K: Rapid prototyping of three-dimensional microfluidic AG-881 nmr mixers in glass by femtosecond laser direct writing. Lab Chip 2012, 12:746–749.CrossRef 20. Du K, Wathuthanthri I, Mao W, Xu W, Choi C-H: Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnology 2011, 22:285306.CrossRef 21. Du K, Wathuthanthri I, Liu Y, Xu W, Choi C-H: Wafer-Scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns. Appl. Mater. Interfaces 2012, 4:5505–5514.CrossRef 22. Du K, Liu Y, Wathuthanthri I, Choi C-H: Dual applications of free-standing holographic nanopatterns for lift-off and stencil lithography. J. Vac. Sci. B 2012, 30:06FF04.CrossRef 23.

Related posts:

  1. J

    Appl Phys 1998,84(11): 6023–6026 CrossRef 18 Hobbs RG,
  2. Org Electron 2011, 12:285–290 CrossRef 22 Chan IM, Hsu TY: Enhan
  3. J Alloy Compd 2013, 553:343–349 CrossRef 12 Shi L, Hao Q, Yu CH,
  4. Exp Cell Res 2002, 275:230–242 CrossRef 11 Tranqui L, Tracqui P:
  5. Authors’ information SHS and JMC are M S students who are studyi
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>