J Alloy Compd 2013, 553:343–349 CrossRef 12 Shi L, Hao Q, Yu CH,

J Alloy Compd 2013, 553:343–349.CrossRef 12. Shi L, Hao Q, Yu CH, Mingo N, Kong XY, Wang ZL: Thermal conductivities of individual tin dioxide nanobelts. Appl Phys Lett 2004, 84:2638–2640.CrossRef 13. Wang JA, Wang JS: Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 2006, 88:111909.CrossRef 14. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova

AY, Treger DM: Spintronics: a spin-based electronics vision for the future. Science 2001, 294:1488–1495.CrossRef 15. Versluijs JJ, Bari MA, Coey JMD: Magnetoresistance of half-metallic oxide nanocontacts. Phys Rev Lett 2001, 87:026601.CrossRef 16. Zutic I, Fabian J, Das Sarma S: Spintronics: fundamentals and applications. Rev Mod Phys 2004, 76:323–410.CrossRef 17. Slack G: Thermal conductivity of MgO, Al 2 O 3 , MgAl 2 O 4 and Fe 3 O 4 crystals from 3 to 300 K. find more Phys Rev 1962, 126:427–441.CrossRef 18. Callaway J: Model for lattice thermal CH5424802 conductivity at low temperatures. Phys Rev 1959, 113:1046–1051.CrossRef 19. Yun JG, Lee YM, Lee WJ, Kim CS, Yoon SG: Selective growth of pure magnetite thin films and/or nanowires grown in situ at a low temperature by pulsed laser deposition. J Mater

Chem C 2013, 1:1977–1982.CrossRef 20. Cahill DG: Thermal-conductivity measurement from 30-K to 750-K- the 3-omega method. Rev Sci Instrum 1990, 61:802–808.CrossRef 21. Lee SY, Kim GS, Lee MR, Lim H, Kim WD, Lee SK: Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-omega technique at low temperatures. Nanotechnology 2013, 24:185401.CrossRef 22. Lee KM, Choi TY, Lee SK, Poulikakos D: Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega

method. Nanotechnology 2010, 21:125301.CrossRef 23. Choi TY, Poulikakos D, Tharian J, Sennhauser U: Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Nano Lett 2006, 6:1589–1593.CrossRef 24. Choi TY, Poulikakos D, Tharian J, Sennhauser U: Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method. Appl Phys Lett 2005, 87:013108.CrossRef 25. Feser Evodiamine JP, Chan EM, Majumdar A, Segalman RA, Urban JJ: Ultralow thermal conductivity in polycrystalline CdSe thin films with controlled grain size. Nano Lett 2013, 13:2122–2127.CrossRef 26. Feser JP, Sadhu JS, Azeredo BP, Hsu KH, Ma J, Kim J, Seong M, Fang NX, Li XL, Ferreira PM, Sinha S, Cahill DG: Thermal conductivity of silicon nanowire arrays with controlled roughness. J Appl Phys 2012, 112:114306.CrossRef 27. Wang ZJ, Alaniz JE, Jang WY, Garay JE, Dames C: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths.

Related posts:

  1. Appl Phys A: Mater Sci Process 2009, 95:635–638 CrossRef 10 Moen
  2. Org Electron 2011, 12:285–290 CrossRef 22 Chan IM, Hsu TY: Enhan
  3. While amorphous carbons were formed on CaF2 and BaF2, nanocrystal
  4. , 2005, Miller and Katz, 2013, Usher and McClelland, 2001 and Won
  5. The quality of each branch is calculated using the bootstrap test
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>