J Alloy Compd 2013, 553:343–349.CrossRef 12. Shi L, Hao Q, Yu CH, Mingo N, Kong XY, Wang ZL: Thermal conductivities of individual tin dioxide nanobelts. Appl Phys Lett 2004, 84:2638–2640.CrossRef 13. Wang JA, Wang JS: Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 2006, 88:111909.CrossRef 14. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova
AY, Treger DM: Spintronics: a spin-based electronics vision for the future. Science 2001, 294:1488–1495.CrossRef 15. Versluijs JJ, Bari MA, Coey JMD: Magnetoresistance of half-metallic oxide nanocontacts. Phys Rev Lett 2001, 87:026601.CrossRef 16. Zutic I, Fabian J, Das Sarma S: Spintronics: fundamentals and applications. Rev Mod Phys 2004, 76:323–410.CrossRef 17. Slack G: Thermal conductivity of MgO, Al 2 O 3 , MgAl 2 O 4 and Fe 3 O 4 crystals from 3 to 300 K. find more Phys Rev 1962, 126:427–441.CrossRef 18. Callaway J: Model for lattice thermal CH5424802 conductivity at low temperatures. Phys Rev 1959, 113:1046–1051.CrossRef 19. Yun JG, Lee YM, Lee WJ, Kim CS, Yoon SG: Selective growth of pure magnetite thin films and/or nanowires grown in situ at a low temperature by pulsed laser deposition. J Mater
Chem C 2013, 1:1977–1982.CrossRef 20. Cahill DG: Thermal-conductivity measurement from 30-K to 750-K- the 3-omega method. Rev Sci Instrum 1990, 61:802–808.CrossRef 21. Lee SY, Kim GS, Lee MR, Lim H, Kim WD, Lee SK: Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-omega technique at low temperatures. Nanotechnology 2013, 24:185401.CrossRef 22. Lee KM, Choi TY, Lee SK, Poulikakos D: Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega
method. Nanotechnology 2010, 21:125301.CrossRef 23. Choi TY, Poulikakos D, Tharian J, Sennhauser U: Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Nano Lett 2006, 6:1589–1593.CrossRef 24. Choi TY, Poulikakos D, Tharian J, Sennhauser U: Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method. Appl Phys Lett 2005, 87:013108.CrossRef 25. Feser Evodiamine JP, Chan EM, Majumdar A, Segalman RA, Urban JJ: Ultralow thermal conductivity in polycrystalline CdSe thin films with controlled grain size. Nano Lett 2013, 13:2122–2127.CrossRef 26. Feser JP, Sadhu JS, Azeredo BP, Hsu KH, Ma J, Kim J, Seong M, Fang NX, Li XL, Ferreira PM, Sinha S, Cahill DG: Thermal conductivity of silicon nanowire arrays with controlled roughness. J Appl Phys 2012, 112:114306.CrossRef 27. Wang ZJ, Alaniz JE, Jang WY, Garay JE, Dames C: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths.
Related posts:
- Appl Phys A: Mater Sci Process 2009, 95:635–638 CrossRef 10 Moen
- Org Electron 2011, 12:285–290 CrossRef 22 Chan IM, Hsu TY: Enhan
- While amorphous carbons were formed on CaF2 and BaF2, nanocrystal
- , 2005, Miller and Katz, 2013, Usher and McClelland, 2001 and Won
- The quality of each branch is calculated using the bootstrap test