IEEE Trans Circuit Theory 1971, CT-18:507 CrossRef 37 Tsuruoka T

IEEE Trans Circuit Theory 1971, CT-18:507.CrossRef 37. Tsuruoka T, Terabe K, Hasegawa T, Aono M: Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 2010, 21:425205.CrossRef 38. Chen YS, Lee HY, Chen PS, Wu TY, Wang CC, Tzeng PJ, Chen F, Tsai MJ, Lien C: An ultrathin forming-free HfO x resistance memory with excellent electrical performance. IEEE Electron Device Lett 2010, 31:1473.CrossRef 39. Qinan M, Zhenguo J, Junhua

X: Realization of forming-free ZnO-based resistive switching memory by controlling film thickness. J Phys D Appl Phys 2010, 43:395104.CrossRef 40. Stille S, Lenser C, Dittmann R, Koehl A, Krug I, Muenstermann R, Perlich J, Schneider CM, Klemradt U, Waser Nec-1s mw R: Detection of filament formation in forming-free resistive switching SrTiO 3 devices with Ti

top electrodes. Appl Phys Lett 2012, 100:223503.CrossRef 41. Prakash A, Maikap S, Chiu H-C, Tien T-C, Lai C-S: Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaO x interface. Nanoscale Res Lett 2013, 8:288.CrossRef 42. Akinaga H, Shima H, Takano F, Inoue IH, Takagi H: Resistive switching effect in metal/insulator/metal heterostructures and its application for non-volatile memory. IEEJ T Electr 2007, 2:453.CrossRef 43. Szot K, Speier W, Bihlmayer G, Waser R: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO 3 . Nat Mater 2006, 5:312.CrossRef 44. Kwon D-H, Kim KM, Jang JH, Jeon JM, Lee MH, Kim GH, Li X-S, Park G-S, Lee B, Han S, Kim M, Hwang

CS: Atomic structure of selleck chemicals llc conducting nanofilaments in TiO 2 resistive switching memory. Molecular motor Batimastat in vivo Nat Nanotechnol 2010, 5:148.CrossRef 45. Xu Z, Bando Y, Wang W, Bai X, Golberg D: Real-time in situ HRTEM-resolved resistance switching of Ag 2 S nanoscale ionic conductor. ACS Nano 2010, 4:2515.CrossRef 46. Rahaman SZ, Maikap S, Chen WS, Lee HY, Chen FT, Tien TC, Tsai MJ: Impact of TaO x nanolayer at the GeSe x /W interface on resistive switching memory performance and investigation of Cu nanofilament. J Appl Phys 2012, 111:063710.CrossRef 47. Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W: Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 2012, 3:732.CrossRef 48. Rahaman SZ, Maikap S, Chen WS, Lee HY, Chen FT, Kao MJ, Tsai MJ: Repeatable unipolar/bipolar resistive memory characteristics and switching mechanism using a Cu nanofilament in a GeO x film. Appl Phys Lett 2012, 101:073106.CrossRef 49. Jeong HY, Lee JY, Ryu M-K, Choi S-Y: Bipolar resistive switching in amorphous titanium oxide thin film. Phys Status Solidi RRL 2010, 4:28.CrossRef 50. Tsui S, Baikalov A, Cmaidalka J, Sun YY, Wang YQ, Xue YY, Chu CW, Chen L, Jacobson AJ: Field-induced resistive switching in metal-oxide interfaces. Appl Phys Lett 2004, 85:317.CrossRef 51. Jeon SH, Park BH, Lee J, Lee B, Han S: First-principles modeling of resistance switching in perovskite oxide material. Appl Phys Lett 2006, 89:042904.

Related posts:

  1. Appl Phys A: Mater Sci Process 2009, 95:635–638 CrossRef 10 Moen
  2. Org Electron 2011, 12:285–290 CrossRef 22 Chan IM, Hsu TY: Enhan
  3. J

    Appl Phys 1998,84(11): 6023–6026 CrossRef 18 Hobbs RG,
  4. J Alloy Compd 2013, 553:343–349 CrossRef 12 Shi L, Hao Q, Yu CH,
  5. J Non-Crystalline Solids 2008, 354:2809–2815 CrossRef 10 Alberti
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>