Mey; however, V ovalis can be distinguished from V

spe

Mey.; however, V. ovalis can be distinguished from V.

spermatosphaera by its larger gonidia, and from V. tertius by visible differences in gonidial chloroplast morphology. “
“The diversity of extant calcareous dinophytes (Thoracosphaeraceae, Dinophyceae) is currently not sufficiently recorded. The majority of their coccoid stages are cryptotabulate or entirely atabulate, whereas relatively few forms exhibit at least some degree of tabulation more than the archeopyle. A survey of coastal surface sediment samples from the Mediterranean Sea resulted in the isolation and cultivation of several strains of calcareous dinophytes showing a prominent tabulation. We investigated the morphologies of the thecate and the coccoid cells and Selleck GSK126 conducted phylogenetic analyses using Maximum Likelihood and Bayesian approaches. The coccoid cells showed a distinct reflection of the cingulum (and were thus cingulotabulate), whereas thecal morphology corresponded to the widely distributed and species-rich

Scrippsiella. As inferred from molecular sequence data (including 81 new GenBank entries), the strains belonged to the Scrippsiella sensu lato clade of the Thoracosphaeraceae and represented two distinct species. Morphological details likewise indicated two distinct species with previously unknown coccoid cells that we describe here as new, namely PD-0332991 in vitro S. bicarinata spec. nov. and S. kirschiae spec. nov. Cingulotabulation results from the fusion of processes representing the pre- and postcingular plate series in S. bicarinata, see more whereas the ridges represent sutures between the cingulum and the pre- and postcingular series in S. kirschiae, respectively. Bicarinate cingulotabulation appears homoplasious among calcareous dinophytes, which is further supported by a comparison to similar, but only distantly related fossil forms. “
“Bayesian and maximum-likelihood (ML) analyses of the combined

multigene data (nuclear SSU rDNA, and plastid SSU and LSU rDNA) were conducted to evaluate the phylogeny of photosynthetic euglenoids. The combined data set consisted of 108 strains of photosynthetic euglenoids including a colorless sister taxon. Bayesian and ML analyses recovered trees of almost identical topology. The results indicated that photosynthetic euglenoids were divided into two major clades, the Euglenaceae clade (Euglena, Euglenaria, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium) and the Phacaceae clade (Phacus, Lepocinclis, Discoplastis). The Euglenaceae clade was monophyletic with high support and subdivided into four main clades: the Colacium, the Strombomonas and Trachelomonas, the Cryptoglena and Monomorphina, and the Euglena and Euglenaria clades. The genus Colacium was positioned at the base of the Euglenaceae and was well supported as a monophyletic lineage.

Related posts:

  1. For standardized desiccation experiments, a new methodological ap
  2. Similarly, Hales et al (1998) reported the existence of two diff
  3. org/10 1016/j cbpa 2013 02 027 Improving the productivity of stra
  4. , 2008; De Baets et al, 2009) FAFLP is a high-resolution and re
  5. foetus are distinct species ( Felleisen, 1998 and Tachezy et al ,
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>