The SOD activity of G thermoleovorans B23 cells was also inducib

The SOD activity of G. thermoleovorans B23 cells was also inducible upon addition of paraquat in the medium, which generates superoxide anion (figure not shown). It seemed most likely that high SOD activity was

required to detoxify superoxide anion, which was generated as a result of alkane degradation including oxidase reaction. So it is probable that a kind of oxidases catalyzes a step of alkane degradation pathway of G. thermoleovorans B23. Therefore, oxidase activity of the B23 cells was examined using tetradecane, tetradecanal, tetradecanol, or tetradecanoyl-CoA as a substrate. Increase in 500 nm (H2O2 formation) after the enzyme reaction was <0.01, 0.02, <0.01, and 0.16 for tetradecane, tetradecanal, tetradecanol, and tetradecanoyl-CoA, respectively. As far as we know, tetradecanoyl-CoA learn more oxidase activity has never been reported for bacteria. As for acyl-CoA oxidase in bacteria, the gene encoding short chain acyl-CoA oxidase has been cloned from Streptomyces fradiae, which forms a biosynthetic gene cluster of macrolide antibiotic, tylosin [19]. In both the bacterial cells and mitochondria of eukaryotic cells, the first and rate-limiting step of β-oxidation pathway is catalyzed by acyl-CoA dehydrogenase, in which acyl-CoA is transformed to enoyl-CoA.

This acyl-CoA dehydrogenase activity is replaced by acyl-CoA oxidase in eukaryotic peroxisome [20]. selleck chemicals llc Peroxisome is an organella which generates and detoxifies reactive oxygen molecules like hydrogen peroxide or superoxide anions. According to the study of alkane degrading yeast Candida, peroxisome is Dimethyl sulfoxide highly developed in the cells grown on alkanes or fatty acids [21]. The development of peroxisomes in the cells of C. tropicalis grown on oleic acid was accompanied by high level expression of peroxisomal proteins, including acyl-CoA oxidase [13]. Catalase is also a marker enzyme of peroxisome

and its activity in Candida cells grown on hydrocarbons was much higher than that in the cells grown on lauryl alcohol, glucose or ethanol. check details Although acyl-CoA oxidase is reported to increase in the Candida cells grown on fatty acids or organic acids, too, neither palmitic acid (hexadecanoic acid) nor oleic acid (octadecenoic acid) was an effective inducer for the production of acyl-CoA oxidase in G. thermoleovorans B23 (Fig. 7a). The acyl-CoA oxidase activity of strain B23 showed broad substrate specificity ranging from hexanoyl-CoA to octadecanoyl-CoA (Fig. 7b). Gene disruption experiments for P16, P21, P24 (SOD) and acyl-CoA oxidase have not been successful at this point to conclude that these enzymes are responsible for alkane degradation pathway of the strain.

Related posts:

  1. ASA404 leads to transient activation of Src kinase activity in glioma cells.
  2. The HDAC activity within the cells can be altered by direct inhib
  3. TUNEL favourable cells were counted as apoptotic cells by movemen
  4. To investigate whether M1 activity caused the 6–14 Hz activity or
  5. egfr inhibitors hdac inhibitors Taxol offers demonstrated anti-proliferative activity on tumor skin cells in vitro
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>