Nag A, Kovalenko MV, Lee JS, Liu W, Spokoyny B, Talapin DV: Metal-free inorganic ligands for colloidal nanocrystals: S 2− , HS − , Se 2− , HSe − , Te 2− , HTe − , TeS 3 2− , OH − , and NH 2− as surface ligands. J Am Chem Soc 2011, 133:10612–10620. 10.1021/ja202941521682249CrossRef 24. Park J, Joo J, Kwon SG, Jang YJ, Hyeon T: Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 2007, 46:4630–4660. 10.1002/anie.200603148CrossRef 25. Li TL, Teng Napabucasin molecular weight H: Solution synthesis of high-quality CuInS 2 quantum dots as sensitizers
for TiO 2 photoelectrodes. J Mater Chem 2010, 20:3656–3664. 10.1039/b927279hCrossRef 26. Cheng AJ, Manno M, Khare A, Leighton C, Capmbell SA, Aydil ES: Imaging and phase identification of Cu 2 ZnSnS 4 thin films using confocal Raman spectroscopy. J Vac Sci Technol A 2011, 29:051203.CrossRef 27. Liu WC, Guo BL, Wu XS, Zhang FM, Mak CL, Wong KH: Facile hydrothermal synthesis of hydrotropic Cu 2 ZnSnS 4 find more nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J Mater Chem A 2013, 1:3182–3186. 10.1039/c3ta00357dCrossRef 28. Khare A, Wills AW, Ammerman LM, Norris DJ, Aydil ES: Size control and quantum confinement in Cu 2 ZnSnS 4 nanocrystals. Chem Commun 2011, 47:11721–11723. 10.1039/c1cc14687dCrossRef
29. Craciun V, Elders J, Gardeniers JGE, Boyd Ian W: Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl Phys Lett 1994, 65:2963–2965. 10.1063/1.112478CrossRef 30. Ahn S, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun JH: Determination of band gap energy many (Eg) of CZTSe thin films: on the discrepancies of reported band gap values. Appl Phys Lett 2010, CDK inhibitor 97:021905. 10.1063/1.3457172CrossRef 31.
Metikoš-Hukocić M, Grubač Z, Omanovic S: Change of n-type to p-type conductivity of the semiconductor passive film on N-steel: enhancement of the pitting corrosion resistance. J Serb Chem Soc 2013, 78:2053–2067. 10.2298/JSC131121144MCrossRef 32. Herraiz-Cardonaa I, Fabregat-Santiagoa F, Renaudb A, Julián-Lópezd B, Odobela F, Carioc L, Jobicc S, Giménez S: Hole conductivity and acceptor density of p-type CuGaO 2 nanoparticles determined by impedance spectroscopy: the effect of Mg doping. Electrochim Acta 2013, 113:570–574.CrossRef 33. Kucur E, Riegler J, Urban GA, Nann T: Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J Chem Phys 2003, 119:2333–2337. 10.1063/1.1582834CrossRef 34. Haram SK, Quinn BM, Bard AJ: Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J Am Chem Soc 2001, 123:8860–8861. 10.1021/ja015820611535097CrossRef 35. Bae Y, Myung N, Bard AJ: Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 2004, 4:1153–1161. 10.1021/nl049516xCrossRef 36. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao M, Eychmuller A, Gaponik N: Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution.
Related posts:
- Org Electron 2011, 12:285–290 CrossRef 22 Chan IM, Hsu TY: Enhan
- J Alloy Compd 2013, 553:343–349 CrossRef 12 Shi L, Hao Q, Yu CH,
- Coord Chem Rev doi:10 1016/j ccr 2008 05 014
- Appl Phys A: Mater Sci Process 2009, 95:635–638 CrossRef 10 Moen
- While amorphous carbons were formed on CaF2 and BaF2, nanocrystal