To make valid comparison between the study by Lundy et al [24] a

To make valid comparison between the study by Lundy et al. [24] and the present study, we estimated the energy intakes in kcal kg-1 body weight in the study by Lundy et al. [24]. The estimated energy intakes of the forwards and backs were 43.8 and 48.4 kcal kg-1 body weight, respectively. In comparison with this study, the mean dietary energy intakes of the forwards (41.0 kcal kg-1 body weight) and backs (40.8 kcal·kg-1 body weight) were still lower in the present study. Thus, the divergence of results could IPI-549 chemical structure be due to

differences in not only the body weight, but also training status, skill levels, dietary differences, and/or ethnicity. Our results indicate that adequate carbohydrate intake is important in rugby. The American College of Sports Medicine, the American Dietetic Association, and Dietetics of Canada (ACSM, ADA, & DC) [25] stated that a diet providing 500 to 600 g of carbohydrate (approximately 7 to 8 g·kg-1 BW for a 70-kg athlete) is adequate to sustain muscle glycogen stores during training and competition. According to these standards, selleck screening library the mean carbohydrate intakes of the forwards and backs (6.5±1.9 and 6.3±2.8 g·kg-1 body weight, respectively) in the present study were marginal. ACSM, ADA, and DC [25] have

recommended protein consumption of 1.2 to 1.4 g·kg-1·day-1 for endurance athletes and 1.6 to 1.7 g·kg-1·day-1 for resistance and strength-trained athletes. Because rugby is a high-intensity, intermittent activity, which SN-38 requires aspects of both strength and endurance over a period of 80 min, we recommend 1.4 to 1.7 g·kg-1·day-1 of protein intake for rugby players. From this assumption, the mean protein intakes of the forwards and backs

in the present study were lower than the recommendation (1.1±0.3 and 1.1±0.4 Mannose-binding protein-associated serine protease g·kg-1·day-1, respectively). In the present study, the mean intakes of calcium, magnesium, and vitamins A, B1, B2, and C were lower than the respective Japanese RDAs or ADIs in the rugby players. Mean intakes below RDAs or ADIs in vitamins A, B1, and B2, iron, calcium, phosphorus, and/or magnesium have been reported in Japanese collegiate soccer players and karate practitioners [22, 26]. To increase mineral and vitamin intakes, the Ministry of Health, Labor, and Welfare in Japan [27] recommends the consumption of 130 g of milk and dairy products, 120 g of green vegetables, and 230 g of other vegetables. In the rugby players, the mean intake of milk and dairy products was higher, but the intake of green and other vegetables was lower than the recommendations. The American and Canadian Dietetic Association’s [28] stated that the increased requirements for some minerals and vitamins during physical activity can be met by consuming a balanced high-carbohydrate, moderate-protein, low-fat diet. One limitation of our study needs to be mentioned.

Related posts:

  1. The vast majority of published research has centered on carbohydr
  2. Hypercalciuria is not necessarily due to an increase in bone
    <
  3. Milk consumption and resistance training also have been investiga
  4. 231 Long-term aggressive nutritional therapy by the enteral or or
  5. This recommends that individuals accumulate 20-60 minutes or more
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>