Wang Y, Lv H, Wang W, Liu Q, Long S, Wang Q, Huo Z, Zhang S, Li Y

Wang Y, Lv H, Wang W, Liu Q, Long S, Wang Q, Huo Z, Zhang S, Li Y, Zuo Q, Lian W, Yang J, Liu M: Highly stable radiation-hardened resistive-Dabrafenib supplier switching memory. IEEE Electron Device Lett 2010, 31:1470.CrossRef 12. He X, Wang W, Butcher B, Tanachutiwat S, Geer RE: Superior TID hardness in TiN/HfO 2 /TiN ReRAMs after proton radiation. IEEE Trans Nucl Sci 2012, 59:2550.CrossRef 13. Tong WM, Yang JJ, Kuekes PJ, Stewart

DR, Williams RS, DeIonno E, King EE, Witczak SC, Looper MD, Osborn JV: Radiation hardness of TiO 2 memristive junctions. IEEE Trans Nucl Sci 2010, 57:1640.CrossRef 14. DeIonno E, Looper MD, Osborn JV, Palko JW: Displacement damage in TiO 2 memristor devices. IEEE Trans Nucl Sci 2013, 60:1379.CrossRef BMS345541 manufacturer 15. Zhang LJ, Huang R, Gao DJ, Yue P, Tang SP600125 PR, Tan F, Cai YM, Wang YY: Total ionizing dose (TID) effects on TaO x -based resistance change memory. IEEE Trans Nucl Sci 2011, 58:2800. 16. Hughart DR, Lohn AJ, Mickel PR, Dalton SM, Dodd PE, Shaneyfelt MR, Silva AI, Bielejec E, Vizkelethy G, Marshall MT: A comparison of the radiation response of TaO x and TiO 2 memristors. IEEE Trans Nucl Sci 2013, 60:4512.CrossRef 17. Kund M, Beitel G, Pinnow CU, Röhr T, Schumann J, Symanczyk R, Ufert KD, Müller G: Conductive

bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. In IEEE International Electron Devices Meeting. IEDM Technical Digest: 5–7 December 2005. Washington, DC: Piscataway: IEEE; 2005. 18. Kim DC, Seo S, Ahn SE, Suh DS, Lee MJ, Park BH, Yoo IK, Baek IG, Kim HJ, Yim EK, Lee JE, Park SO, Kim HS, Chung UI, Moon JT, Ryu BI: Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl Phys Lett 2006, 88:202102. 10.1063/1.2204649CrossRef Ribonucleotide reductase 19. Ninomiya T, Wei Z, Muraoka S, Yasuhara R, Katayama K, Takagi T: Conductive filament scaling of TaOx bipolar ReRAM for improving data retention under low operation current. IEEE Trans Electron Devices 2013, 60:1384.CrossRef 20. Liu CY, Huang JJ, Lai CH, Lin CH: Influence of embedding Cu nano-particles into a Cu/SiO 2 /Pt structure on its resistive switching. Nanoscale Res Lett 2013, 8:1. 10.1186/1556-276X-8-1CrossRef

21. Paccagnella A, Cester A, Cellere G: Ionizing radiation effects on MOSFET thin and ultra-thin gate oxides. In IEEE International Electron Devices Meeting. IEDM Technical Digest: 13–15 December 2004. San Francisco, CA: Piscataway: IEEE; 2004:473–476. 22. Felix JA, Schwank JR, Fleetwood DM, Shaneyfelt MR, Gusev EP: Effects of radiation and charge trapping on the reliability of high-k gate dielectrics. Microelectron Reliab 2004, 44:563. 10.1016/j.microrel.2003.12.005CrossRef 23. Weast RC: CRC Handbook of Chemistry and Physics, Volume 69. Boca Raton, FL: CRC Press; 1988. Competing interests The authors declare that they have no competing interests. Authors’ contributions FY and ZZ provide the idea and designed this study. FY performed the experiments under the guidance of JX and LP.

Related posts:

  1. IEEE Trans Circuit Theory 1971, CT-18:507 CrossRef 37 Tsuruoka T
  2. CrossRef 8 Dekker C: Solid-state nanopores Nat Nano 2007, 2:209
  3. J Alloy Compd 2013, 553:343–349 CrossRef 12 Shi L, Hao Q, Yu CH,
  4. Authors’ information SHS and JMC are M S students who are studyi
  5. (b) Retention characteristics of the twin poly-Si TFT EEPROM at 8
This entry was posted in Antibody. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>